## Local Zeta functions for a class of P-ADIC SYMMETRIC SPACES

Pascale Harinck (CNRS - CMLS- Ecole polytechnique - France)
with Hubert Rubenthaler (IRMA-Strasbourg-France) (arXiv: 2003.05764 for the first part)

In honour of Michèle Vergne's 80th birthday Paris September $23^{\text {th }}$.

## Introduction.

Goal: To generalize the Tate functional equation for local zeta functions to a class of $p$-adic reductive symmetric spaces.
Tate's functional equation (Thesis 1950) on a $p$-adic field $F$ of charact. $0, q=$ cardinal of the residual field of $F$. For $\varphi \in \mathcal{S}(F)$ (smooth, compactly supported), $\chi=$ character of $F^{*}, \operatorname{Re}(s)>s_{0}$.

Local zeta function $\quad Z(\varphi, \chi, s)=\int_{F^{*}} \varphi(t) \chi(t)|t|^{s} d^{*} t$,
L-function: $\exists L(\chi, s)=P_{\chi}\left(q^{-s}\right)^{-1}$ unique, $P_{\chi} \in \mathbb{C}[X]$ such that $P_{\chi}(0)=1$ and

$$
\{Z(\varphi, \chi, s) ; \varphi \in \mathcal{S}(F)\}=L(\chi, s) \mathbb{C}\left[q^{-s}, q^{s}\right] .
$$

Functional Equation $\quad Z\left(\mathcal{F} \varphi, \chi^{-1}, 1-s\right)=\gamma(\chi, s, \psi) Z(\varphi, \chi, s)$. where $\mathcal{F} \varphi(y)=\int_{F} \varphi(x) \psi(x y) d x=$ Fourier transform $(\psi \in \widehat{F})$ $\gamma(\chi, s, \psi)=\frac{L\left(1-s, \chi^{-1}\right)}{L(s, \chi)} \epsilon(\chi, s, \psi)$ with $\epsilon(\chi, s, \psi)=C q^{-m s}$,
$C \in \mathbb{C}, m \in \mathbb{Z}$. (Inverse of the $\rho$ function of Tate).

## EQUATION.

- H.Jacquet-R.Langlands for $G L(2, F)(1970)$,
R.Godement-H.Jacquet for $G=G L(n, D)$ (1972), where $D$ a central division algebra over $F$.
( $\pi, W$ ) $=$ smooth irreducible representation of $G$,

$$
Z\left(\varphi, s, c_{w, \tilde{w}}\right)=\int_{G} \varphi(g) c_{w, \tilde{w}}(g)|\nu(g)|^{s} d g
$$

where $c_{w, \tilde{w}}(g)=\langle\pi(g) w, \tilde{w}\rangle$ and $\nu=$ reduced norm on $M_{n}(D)$.
$Z\left(\mathcal{F} \varphi, \check{c}_{w, \tilde{w}}, n-s\right)=\gamma(\pi, s) Z\left(\varphi, c_{w, \tilde{w}}, s\right), \quad \check{c}_{w, \tilde{w}}(g)=c_{w, \tilde{w}}\left(g^{-1}\right)$

## Existence of $L$ and $\epsilon$-functions.

- M. Sato, F. Sato (1989) and I. Muller (arXiv 2008) on a class of prehomogeneous vector space $(M, V)$ (ie. $\exists M(\bar{F})$ open orbit in $V \otimes \bar{F}$ ), with relative invariant polynomials $P_{0}, \ldots, P_{m}$

$$
Z(\Phi, s, \omega)=\int_{V} \Phi(X) \prod_{j=0}^{m} \omega_{j}\left(P_{j}(X)\right)\left|P_{j}(X)\right|^{s_{j}} d X, \omega_{j} \in \widehat{F}^{*}, s \in \Omega \subset \mathbb{C}^{m}
$$

$\rightarrow$ abstract functional equations and explicit ones on examples.

## EQUATION.

- N.Bopp - H.Rubenthaler (2005): classification of commutative regular PV on $\mathbb{R}$ and explicit functional equations for zeta functions associated to minimal spherical principal series.
- W. W. Li (2018-2021): abstract functional equations for zeta functions associated to smooth irreducible rep. on PV whose open orbit is a wavefront spherical variety (which includes symmetric space) (under some assumptions).

Our results are the analog in $p$-adic case of those of N.Bopp-H.Rubenthaler+existence of $L$ functions.

Perspectives. For a class of commutative irred. regular PV with a unique open orbit, we hope to obtain explicit formulation of results of W.W. Li (and, if it is possible, with existence of $L$ and $\epsilon$-functions).

## Structure of 3-Graded algebras.

We fix $F$ a $p$-adic field of charac. 0 and $\bar{F}$ an algebraic closure.
A commutative prehomogeneous vector space over $F$ (called a PV) is constructed from a 3-graded reductive algebra $\tilde{\mathfrak{g}}$ defined over $F$.

$$
\begin{array}{llll} 
& \tilde{\mathfrak{g}}= & V^{-} \oplus & \mathfrak{g} \oplus \\
\text { graded by } H_{0}: & -2 & 0 & V^{+} \\
\hline
\end{array}
$$

We always suppose that:

1) The representation $\left(\mathfrak{g}, V^{+}\right)$is absolutely irreducible (i.e. $\left(\mathfrak{g} \otimes \bar{F}, V^{+} \otimes \bar{F}\right)$ is irreducible.
2) $\exists X \in V^{+}, Y \in V^{-}$such that $\left\{Y, H_{0}, X\right\}$ is an $\mathfrak{s l}_{2}$-triple (Regularity condition).
We fix $\mathfrak{a}=$ maximal split abelian subalgebra of $\mathfrak{g}$ containing $H_{0}$ (it is also maximal split abelian in $\tilde{\mathfrak{g}}$ )

$$
\widetilde{\Sigma}=\text { roots of }(\tilde{\mathfrak{g}}, \mathfrak{a}), \quad \Sigma=\text { roots of }(\mathfrak{a}, \mathfrak{a})
$$

## Structure of 3-graded algebras.

## Theorem

There exists a basis of simple roots $\tilde{\Pi} \subset \tilde{\Sigma}$ such that
(1) There is a unique root $\lambda_{0} \in \widetilde{\Pi}$ with $\lambda_{0}\left(H_{0}\right)=2$
(2) for $\nu \in \widetilde{\Pi}, \nu \neq \lambda_{0}$ then $\nu\left(H_{0}\right)=0$. $\left(\Pi=\widetilde{\Pi} \backslash \lambda_{0}=\right.$ basis of $\left.\Sigma\right)$.
(3) Inductively, $\left(\tilde{\mathfrak{g}}_{1}=Z_{\tilde{\mathfrak{g}}}\left(\tilde{\mathfrak{l}}_{0}\right)\right.$, with $\left.\widetilde{\mathfrak{l}}_{0}=\widetilde{\mathfrak{g}}^{-\lambda_{0}} \oplus\left[\tilde{\mathfrak{g}}^{-\lambda_{0}}, \widetilde{\mathfrak{g}}^{\lambda_{0}}\right] \oplus \widetilde{\mathfrak{g}}^{\lambda_{0}}\right)$, $\exists$ a sequence of strongly orthogonal roots $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$, where $k$ is uniquely determined by the condition

$$
\left.V^{+} \cap Z_{\tilde{\mathfrak{g}}} \widetilde{\mathfrak{l}}_{0} \oplus \ldots \oplus \widetilde{\mathfrak{l}}_{k}\right)=\{0\} .
$$

and we have $H_{0}=H_{\lambda_{0}}+\ldots+H_{\lambda_{k}}\left(H_{\lambda_{j}}\right.$ is the coroot of $\left.\lambda_{j}\right)$. $k+1$ is called the rank of $\tilde{\mathfrak{g}}$.

## Classification of simple regular irreducible 3-GRADED ALGEBRAS.

Let $\mathfrak{j}$ be a Cartan subalgebra of $\tilde{\mathfrak{g}}$ such that $\mathfrak{a} \subset \mathfrak{j} \subset \mathfrak{g} \subset \tilde{\mathfrak{g}}$.
Let $\widetilde{\Psi}$ be a basis of $\widetilde{\mathcal{R}}=$ roots of $(\widetilde{\mathfrak{g}} \otimes \bar{F}, \mathfrak{j} \otimes \bar{F})$ such that $\rho(\widetilde{\Psi})=\widetilde{\Pi} \cup\{0\}$, where $\rho: \overline{\mathfrak{j}}^{*} \longrightarrow \mathfrak{a}^{*}$ is the restriction morphism.

## Proposition

There is a unique simple root $\alpha_{0} \in \widetilde{\Psi}$ such that $\rho\left(\alpha_{0}\right)=\lambda_{0}$.

## Consequence

(1) In the Satake -Tits diagram of $\tilde{\mathfrak{g}}$, the root $\alpha_{0}$ is "white".
(2) The underlying Dynkin diagram, where the root $\alpha_{0}$ is distinguished, correspond to a regular 3-graded algebra over $\bar{F}$. (which are classified as on $\mathbb{C}$ (I.Muller- H.RubenthalerG.Schiffmann))

## TABLE

Table 1 Simple Regular Graded Lie Algebras over a $p$-adic field

|  | $\mathfrak{g}$ | $\mathfrak{g}^{\prime}$ | $V^{+}$ | $\widetilde{R}$ | $\widetilde{\Sigma}$ | Satake-Tits diagram | $\operatorname{rank}(=k+1)$ | $\ell$ | $d$ | $e$ | Type | 1-type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | $\mathfrak{s l}(2(k+1), D)$ | $\begin{gathered} \hline \mathfrak{s l}(k+1, D) \\ \quad \oplus \\ \mathfrak{s l}(k+1, D) \\ \hline \end{gathered}$ | $\mathrm{M}(k+1, D)$ | $\underset{n=(k+1) \delta}{A_{2 n-1}}$ | $A_{2 k+1}$ | $\text { where }=\bullet \bullet \bullet \bullet \bullet\left(\delta \in \mathbb{N}^{*}\right)$ | $k+1$ | $\delta^{2}$ | $2 \delta^{2}$ | 0 | I | $(A, \delta)$ |
| (2) | $\mathrm{u}\left(2 n, E, H_{n}\right)$ | $5!(n, E)$ | $\operatorname{Herm}_{\sigma}(n, E)$ | $\underset{\substack{A_{2 n-1} \\ n \geqslant 1}}{ }$ | $C_{n}$ |  | $n$ | 1 | 2 | 2 | II | $(A, 1)$ |
| (3) | $\mathfrak{o}\left(q_{(n+1, n)}\right)$ | $0\left(q_{(n, n-1)}\right)$ | $F^{2 n-1}$ | $\begin{gathered} B_{n} \\ n \geq 3 \\ \hline \end{gathered}$ | $B_{n}$ | (0) $0 \cdots \cdots 0-0 \cdots \cdots 000$ | 2 | 1 | $2 n-3$ | 1 | II | $(A, 1)$ |
| (4) | $\mathfrak{o}\left(q_{(n+2, n-1)}\right)$ | $0\left(q_{(n+1, n-2)}\right)$ | $F^{2 n-1}$ | $\underset{\substack{B_{n} \\ n \geqslant 3}}{\substack{\text { n }}}$ | $B_{n-1}$ | $0-0-0 \cdots 0$ | 2 | 1 | $2 n-3$ | 3 | II | $(A, 1)$ |
| (5) | $0\left(q_{(4,1)}\right)$ | o(3) | $F^{3}$ | $B_{2}$ | $B_{1}=A_{1}$ | $\xrightarrow{(1)}$ | 1 | 3 | -- | -- | III | $B$ |
| (6) | sp (2n, $F$ ) | $\mathrm{sl}(n, F)$ | $\operatorname{Sym}(n, F)$ | $\underset{\substack{C_{n} \\ n \geqslant 2}}{ }$ | $C_{n}$ | $0-0-0 \cdots \cdots$ | $n$ | 1 | 1 | 1 | II | $(A, 1)$ |
| (7) | $\mathfrak{u}\left(2 n, \mathbb{H}, H_{2 n}\right)$ | sl( $n, H$ H) | SkewHerm(n, $\mathbb{H})$ | $C_{2 n}$ | $C_{n}$ | $\bullet 0-\cdots \cdots 0000$ | $n$ | 3 | 4 | 4 | III | B |

Basic invariants: $\bullet \ell=\operatorname{dim} \widetilde{\mathfrak{g}}^{\lambda_{i}}, \bullet e=\operatorname{dim} \widetilde{\mathfrak{g}} \frac{\left(\lambda_{i}+\lambda_{j}\right)}{2} \geq 0, \quad i \neq j$

- $d=\operatorname{dim} E_{i, j}( \pm 1, \pm 1) \quad i \neq j$, where $X \in E_{i, j}(p, q)$
$\Longleftrightarrow\left[H_{\lambda_{i}}, X\right]=p X,\left[H_{\lambda_{j}}, X\right]=q X,\left[H_{\lambda_{s}}, X\right]=0, s \neq i, j$,


## TABLE

Table 1 (continued) Simple Regular Graded Lie Algebras over a $p$-adic field

|  | $\tilde{\mathfrak{g}}$ | $\mathfrak{g}^{\prime}$ | $V^{+}$ | $\widetilde{\mathcal{R}}$ | $\widetilde{\Sigma}$ | Satake diagram | $\operatorname{rank}(=k+1)$ | $\ell$ | d | $e$ | Type | 1-type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (8) | $\mathfrak{o}\left(q_{(m, m)}\right)$ | $\mathfrak{o}\left(q_{(m-1, m-1)}\right)$ | $F^{2 m-2}$ | $\underset{\substack{D_{m} \\ m}}{ }$ | $D_{m}$ | (0)-0-0.0.0) | 2 | 1 | $2 m-4$ | 0 | I | $(A, 1)$ |
| (9) | $\mathfrak{o}\left(q_{(m+1, m-1)}\right)$ | $\mathfrak{o}\left(q_{(m, m-2)}\right.$ | $F^{2 m-2}$ | $\begin{array}{\|c} D_{m} \\ m \geqslant 4 \\ \hline \end{array}$ | $B_{m-1}$ |  | 2 | 1 | $2 m-4$ | 2 | II | $(A, 1)$ |
| (10) | $\mathfrak{o}\left(q_{(m+2, m-2)}\right)$ | $\mathfrak{o}\left(q_{(m+1, m-3)}\right)$ | $F^{2 m-2}$ | $\begin{gathered} D_{m} \\ m \geqslant 4 \end{gathered}$ | $B_{m-2}$ | , | 2 | 1 | $2 m-4$ | 4 | I | $(A, 1)$ |
| (11) | $\mathfrak{o}\left(q_{(2 n, 2 n)}\right)$ | $\mathfrak{s l}(2 n, F)$ | Skew $(2 n, F)$ | $\begin{aligned} & D_{2 n} \\ & n \geqslant 3 \\ & \hline \end{aligned}$ | $D_{2 n}$ | $\bigcirc 0$ | $n$ | 1 | 4 | 0 | I | $(A, 1)$ |
| (12) | $\mathfrak{u}\left(2 n, \mathbb{H}, K_{2 n}\right)$ | $\mathfrak{s l}(n, \mathbb{H})$ | $\operatorname{Herm}(n, \mathbb{H})$ | $\begin{aligned} & D_{2 n} \\ & n \geqslant 3 \\ & \hline \end{aligned}$ | $C_{n}$ |  | $n$ | 1 | 4 | 4 | I | $(A, 1)$ |
| (13) | split $E_{7}$ | split $E_{6}$ | $\operatorname{Herm}\left(3, \mathbb{O}_{s}\right)$ | $E_{7}$ | $E_{7}$ |  | 3 | 1 | 8 | 0 | I | $(\mathrm{A}, 1)$ |

We remark that $\ell=3$ or $\ell=\delta^{2}, \delta \in \mathbb{N}^{*}$ and $0 \leq e \leq 4$.

## G-open orbits

Let $\operatorname{Aut}_{0}(\underline{\tilde{\mathfrak{g}}})=\operatorname{Aut}(\tilde{\mathfrak{g}}) \cap \operatorname{Aut}_{e}(\tilde{\mathfrak{g}} \otimes \bar{F})$ where
Aut $_{e}(\tilde{\mathfrak{g}} \otimes \bar{F})=\left\langle e^{\operatorname{ad}(x)}, x\right.$ nilpotent in $\left.\tilde{\mathfrak{g}} \otimes \bar{F}\right\}$ (group of elementary automorphisms). We introduce the group $G$

$$
G=Z_{\operatorname{Aut}_{0}(\tilde{\mathfrak{g}})}\left(H_{0}\right)
$$

$G=\mathbf{G}(F), \mathbf{G}$ algebraic reductive group defined over $F$, $\operatorname{Lie}(G)=\mathfrak{g}, G$ stabilizes $V^{ \pm}$and $\mathfrak{g}$.

## Theorem

(1) $\left(G, V^{+}\right)$is a regular irreducible prehomogeneous vector space. We denote by $\Delta_{0}$ its relative invariant polynomial.
(2) If $\ell=\delta^{2}, \delta \in \mathbb{N}^{*}$ and $e=0$ or 4 , the group $G$ has a unique open orbit $\Omega^{+}=\left\{X \in V^{+} ; \Delta_{0}(X) \neq 0\right\}$,
(3) In other cases, the number $r$ of open $G$-orbits in $V^{+}$depends on the parity of $k$ and $r \in\{2,3,4,5\}$ except when $e=2$ and $k$ is even for which $r=1$.
(4) Same results for $\left(G, V^{-}\right)$with relative inv. polynomial $\nabla_{0}$.

SYMMETRIC SPACES AND MINIMAL $\sigma_{s^{-}}$PARABOLIC

## SUBGROUP $P$

Let $\Omega_{s}^{ \pm}=G . \mathcal{I}_{s}^{ \pm}$, for $s=1 \ldots, r$, be the open $G$-orbits in $V^{ \pm}$with

$$
\mathcal{I}_{s}^{ \pm} \in \oplus_{j=0}^{k} \tilde{\mathfrak{g}}^{ \pm \lambda_{j}}, \text { such that }\left\{\mathcal{I}_{s}^{-}, H_{0}, \mathcal{I}_{s}^{+}\right\}=\mathfrak{s} l_{2} \text { - triple }
$$

Let $w_{s}=e^{\text {ad } \mathcal{I}_{s}^{+}} e^{\text {ad } \mathcal{I}_{s}^{-}} e^{\text {ad } \mathcal{I}_{s}^{+}}$be the non trivial element of the corresponding Weyl group.
We set $\sigma_{s}(X)=w_{s} \cdot X, X \in \tilde{\mathfrak{g}}, \quad \sigma_{s}(g)=w_{s} g w_{s}^{-1}, g \in \operatorname{Aut}_{0}(\tilde{\mathfrak{g}})$.

## Proposition

(1) $\sigma_{s}$ is an involution of $\tilde{\mathfrak{g}}, \mathfrak{g}$ and $G$.
(2) $H_{s}=Z_{G}\left(\mathcal{I}_{s}^{+}\right)=Z_{G}\left(\mathcal{I}_{s}^{-}\right)$is a subgroup of $G^{\sigma_{s}}$ with Lie algebra $\mathfrak{g}^{\sigma_{s}}$ so that $\Omega_{s}^{ \pm} \simeq G / H_{s}$ are symmetric spaces.

$$
\begin{aligned}
& \text { Let } \mathfrak{a}^{0}=\oplus_{j=0}^{k} F H_{\lambda_{j}} \text { and } \mathfrak{n}=\oplus_{0 \leq i<j \leq k} E_{i, j}(1,-1) \subset \mathfrak{g} \text { and } \\
& P=L N \text { where } L=Z_{G}\left(\mathfrak{a}^{0}\right) \text { and } N=\exp ^{\operatorname{ad} \mathfrak{n}}
\end{aligned}
$$

## LEMMA

For all $\Omega_{s}^{ \pm}, \sigma_{s}(P)$ is the opposite parabolic subgroup of $P$ (ie. $P$ is a $\sigma_{s}$-parabolic subgroup), and $P$ is minimal for this property.

## Prehomogeneous vector spaces $\left(P, V^{ \pm}\right)$

## Theorem

Let $\Delta_{j}(j=0, \ldots, k)$ be the relative invariant polynomial of
$\left(G_{j}, V_{j}^{+}\right)$corresponding to $\tilde{\mathfrak{g}}_{j}=Z_{\tilde{\mathfrak{g}}}\left(\tilde{\mathfrak{l}}_{0} \oplus \ldots \oplus \tilde{\mathfrak{l}}_{j}\right)$. Then
(1) $\left(P, V^{+}\right)$is prehomogeneous, and the $\Delta_{j}$ 's are the relative invariants.
(2) $\left(P, V^{-}\right)$is prehomogeneous, with a family of relative invariants $\nabla_{j}$.
(3) If $\ell=\delta^{2}$ and $e=0$ or $4, P$ has a unique open orbit in $V^{ \pm}$.
(1) In other cases, the number $N$ of open $P$-orbits depends on $e$, $\ell$ and $k\left(N=3^{k+1}\right.$ if $\ell=3$, and for $\ell=1: N=4^{k}$ if $e=1$ or 3 and $N=2^{k}$ if $e=2$ ).

## FUNCTIONS.

From now, we assume that $\ell=\delta^{2}$ and $e=0$ or 4 . Hence, $G$ and $P$ have a unique open orbit in $V^{ \pm} .\left(\Omega^{ \pm}=G \cdot \mathcal{I}^{ \pm} \simeq G / H\right)$.

## H-DISTINGUISHED REPRESENTATION

A smooth admissible representation $(\pi, W)$ of $G$ is $H$-distinguished if $\left(W^{*}\right)^{H} \neq\{0\}$ (space of $H$-invariant linear forms).

Zeta functions (formally defined).
For $\xi \in\left(W^{*}\right)^{H}, w \in W$ and $\Phi \in \mathcal{S}\left(V^{+}\right), \Psi \in \mathcal{S}\left(V^{-}\right)$, and $z \in \mathbb{C}$, we set:

$$
\begin{aligned}
& \mathcal{Z}^{+}(\Phi, z, \xi, w)=\int_{G / H} \Phi\left(g \cdot \mathcal{I}^{+}\right)<\pi^{*}(g) \xi, w>\left|\Delta_{0}\left(g \cdot \mathcal{I}^{+}\right)\right|^{z} d g \\
& \mathcal{Z}^{-}(\Psi, z, \xi, w)=\int_{G / H} \Psi\left(g \cdot \mathcal{I}^{-}\right)<\pi^{*}(g) \xi, w>\left|\nabla_{0}\left(g \cdot \mathcal{I}^{-}\right)\right|^{z} d g .
\end{aligned}
$$

## ZETA FUNCTIONS.

IF $\ell=\delta^{2}, d=2 \ell$ AND $e=0$, THEN BY THE CLASSIFICATION
$V^{+} \simeq \mathfrak{g} /(n, D), \quad G / H \simeq G L(n, D) \times G L(n, D) / \operatorname{diag} \simeq G L(n, D)$,
where $D$ is a central division algebra of degree $\delta$.
$\Longrightarrow$ our zeta functions coincide with those of Godement-Jacquet.

## Theorem (W.W. Li)

If $(\pi, W)$ is irreducible, then for $\operatorname{Re} z \gg 0$, the integrals $\mathcal{Z}^{ \pm}(\Phi, z, \xi, w)$ are convergent for $\Phi \in \mathcal{S}\left(V^{ \pm}\right)$,
$(\xi, w) \in\left(W^{*}\right)^{H} \times W$, and extend to rational functions in $q^{-z}$.

## Proof.

W.W. Li proves this result when $G$ is split, using results of Sakellaridis and Venkatesh (on neighborhood at infinity and boundary degenerations). Arguments are valid in general case by
P. Delorme's results.

## Functional EQuATION

## Fourier transform.

$\mathcal{F}(\Phi)(Y)=\int_{V^{+}} \Phi(X) \psi(b(X, Y)) d X, \quad Y \in V^{-}, \Phi \in \mathcal{S}\left(V^{+}\right)$, where $\psi \in \hat{F}$, and $b$ is a suitable normalization of the Killing form.

## Theorem (Li, H-Rubenthaler)

Let $(\pi, W)$ be a $H$-distinguished smooth irreducible representation of $G\left(\operatorname{dim}\left(W^{*}\right)^{H}<\infty\right.$ by Sakellaridis - Venkatesh $)$ ).
Then, there exists an endomorphism $\gamma_{\psi}(\pi, z)$ of $W^{* H}$, rational in $q^{-z}$, such that

$$
\mathcal{Z}^{-}(\mathcal{F}(\Phi), m-z, \xi, w)=\mathcal{Z}^{+}\left(\Phi, z, \gamma_{\psi}(\pi, z) \xi, w\right), m=\frac{\operatorname{dim} V^{+}}{k+1}
$$

## Proof.

W.W. Li proves this results under assumptions on $V^{+}-\Omega^{+}$. We give a simpler proof in our case using Bruhat's results.

## MINIMAL PRINCIPAL SERIES

Here, we assume that $\ell=1$ and $e=0$ or 4 .
Recall that $P=L N$ with $L=Z_{G}\left(\oplus_{j} F H_{\lambda_{j}}\right)$ and $\sigma(P)$ is opposite to
$P$. As $\ell=1$ the group $L$ acts by a scalar $x_{j}(\cdot)$ on $\tilde{\mathfrak{g}}^{\lambda_{j}}$ and

$$
L / L \cap H \simeq\left(F^{*}\right)^{k+1} \text { by the map } I \mapsto\left(x_{0}(I), \ldots, x_{k}(I)\right)
$$

For $\delta=\left(\delta_{0}, \ldots, \delta_{k}\right) \in \widehat{F}^{k+1}$ a unitary character and $\mu \in \mathbb{C}^{k+1}$, we define a character $\delta_{\mu}$ of $L$, which is trivial on $L \cap H$, by

$$
\delta_{\mu}(I)=\prod_{j=0}^{k} \delta_{j}\left(x_{j}(I)\right)\left|x_{j}(I)\right|^{\mu_{j}}
$$

By P.Blanc-P.Delorme, for almost $\mu$, the representation $\left(\operatorname{Ind}{ }_{P}^{G} \delta_{\mu}, I_{\delta_{\mu}}\right)$ is $H$-distinguished and $\operatorname{dim}\left(I_{\delta_{\mu}}^{*}\right)^{H}=1$.

## Theorem

Recall that $m=\frac{\operatorname{dim} V^{+}}{k+1}$. Let $\xi \in\left(I_{\delta_{\mu}}^{*}\right)^{H}$ and $w \in I_{\delta_{\mu}}$. Then
(1) $\mathcal{Z}^{ \pm}(\Phi, z, \xi, w)$ are convergent for $\operatorname{Re} z \gg 0$ and extend to rational functions in $q^{-z}$,
(2) Existence of $L$-function: $\exists!L^{ \pm}\left(z, \delta_{\mu}\right)=P\left(q^{-z}\right)^{-1}$ such that $P \in \mathbb{C}[X], P(0)=1$ and $\left\{\mathcal{Z}^{ \pm}(\Phi, z, \xi, w) ; \Phi, \xi, w\right.$ as usual $\}=L^{ \pm}\left(z, \delta_{\mu}\right) \mathbb{C}\left[q^{-z}, q^{z}\right]$
(3) Explicit functional equation
$\mathcal{Z}^{-}\left(\mathcal{F} \Phi, \frac{(m+1)}{2}-z, \xi, w\right)=d(\delta, \mu, z) \quad \mathcal{Z}^{+}\left(\Phi, z+\frac{(m-1)}{2}, \xi, w\right)$
with $d(\delta, \mu, z)=C_{\tilde{\mathfrak{g}}} \prod_{j=0}^{k} \gamma\left(\delta_{j}, z-\mu_{j}, \psi\right)$
where $\gamma(\cdot, \cdot, \psi)$ is the inverse of the $\rho$ function of Tate, $C_{\tilde{\mathfrak{g}}} \in \mathbb{C}^{*}$.
Moreover $d(\delta, \mu, z)=C^{\prime} \frac{L^{-}\left(1-z, \delta_{\mu}\right)}{L^{+}\left(z, \delta_{\mu}\right)} q^{-s n}, C^{\prime} \in \mathbb{C}, n \in \mathbb{Z}$.

## Comments

- On the proof:- Relation between $\mathcal{Z}^{+}(\Phi, z, \xi, w)$ and the zeta functions $Z(\Phi, \omega, s)$ of Sato for $\left(P, V^{+}\right)$when $z$ and $\mu$ are in some convex cones

$$
Z(\Phi, \omega, s)=\int_{V^{+}} \Phi(X) \prod \omega_{j}\left(\Delta_{j}(X)\right)\left|\Delta_{j}(X)\right|^{s_{j}} d X
$$

- $\left(P, V^{ \pm}\right)$satisfies hypothesis of Theorem $k_{p}$ of F . Sato (on $P$ singular orbits on $\left.V^{+}-\Omega^{+}\right) \longrightarrow$ abstract functional equation for the zeta functions $Z(\Phi, \omega, s)$ of Sato.
- The last point is an easy consequence of existence of $L$-functions and functional equation.
- Open problem: Explicit expression of $L$-functions.


## Corollary

If $(\pi, W)$ is an irreducible $H$-distinguished subrepresentation of $I_{\delta_{\mu}}$ then the same results hold for zeta functions associated to $(\pi, W)$.

## Perspectives $(\ell=1, e=0$ or 4$)$.

Generalize our result to any smooth irreducible $H$-distinguished representation $(\pi, W)$ : Subrepresentation Theorem for $p$-adic symmetric spaces of Kato -Takano: $(\pi, W)$ is a subrepresentation of $\operatorname{Ind}{ }_{Q}^{G} \tau$, where

- $Q$ is $\sigma$-parabolic subgroup (ie. $\sigma(Q)$ and $Q$ are opposite)
- $\tau$ is a relatively cuspidal representation of $M=Q \cap \sigma(Q)$ (ie. $\tau=$ smooth irred., $M \cap H$-distinguished and $\left\langle\tau^{*}(m) \xi, w\right\rangle$ is compactly supported modulo $Z_{M}(M \cap H)$ for $\xi \in\left(V_{\tau}^{*}\right)^{H \cap M}$ and $\left.w \in V_{\tau}\right)$.


## PROPOSITION

If $\left(\tau, V_{\tau}\right)$ is relatively cuspidal representation, then

- there exists $L$-functions for $\mathcal{Z}^{ \pm}(\Phi, \tau, \xi, v)$.
- Moreover, if $\operatorname{dim}\left(V_{\tau}^{*}\right)^{M \cap H}=1$, then the factor $\gamma(\tau, z, \psi)$ is scalar and satisfies $\gamma(\tau, z, \psi)=C \frac{L^{-}(1-z, \tau)}{L^{+}(z, \tau)} q^{-s n}$ for some $C \in \mathbb{C}^{*}, n \in \mathbb{Z}$.


## THANK YOU FOR YOUR ATTENTION

