LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES

Pascale Harinck (CNRS - CMLS- Ecole polytechnique - France)

with Hubert Rubenthaler (IRMA-Strasbourg-France) (arXiv: 2003.05764 for the first part)

In honour of Michèle Vergne's 80th birthday Paris September 23th.

INTRODUCTION.

Goal: To generalize the Tate functional equation for local zeta functions to a class of *p*-adic reductive symmetric spaces. **Tate's functional equation** (Thesis 1950) on a *p*-adic field *F* of charact. 0, *q*=cardinal of the residual field of *F*. For $\varphi \in S(F)$ (smooth, compactly supported), χ = character of F^* , $\text{Re}(s) > s_0$.

Local zeta function
$$Z(\varphi, \chi, s) = \int_{F^*} \varphi(t)\chi(t)|t|^s d^*t,$$

L-function: $\exists L(\chi, s) = P_{\chi}(q^{-s})^{-1}$ unique, $P_{\chi} \in \mathbb{C}[X]$ such that $P_{\chi}(0) = 1$ and

$$\{Z(\varphi,\chi,s);\varphi\in\mathcal{S}(F)\}=L(\chi,s)\mathbb{C}[q^{-s},q^{s}].$$

Functional Equation $Z(\mathcal{F}\varphi, \chi^{-1}, 1-s) = \gamma(\chi, s, \psi)Z(\varphi, \chi, s)$. where $\mathcal{F}\varphi(y) = \int_F \varphi(x)\psi(xy)dx$ = Fourier transform $(\psi \in \widehat{F})$ $\gamma(\chi, s, \psi) = \frac{L(1-s, \chi^{-1})}{L(s, \chi)}\epsilon(\chi, s, \psi)$ with $\epsilon(\chi, s, \psi) = Cq^{-ms}$, $C \in \mathbb{C}$, $m \in \mathbb{Z}$. (Inverse of the ρ function of Tate).

GENERALIZATIONS OF TATE'S FUNCTIONAL EQUATION.

• H.Jacquet-R.Langlands for GL(2, F) (1970), R.Godement-H.Jacquet for G = GL(n, D) (1972), where D a central division algebra over F. (π, W) =smooth irreducible representation of G,

$$Z(\varphi, s, c_{w, \tilde{w}}) = \int_{G} \varphi(g) c_{w, \tilde{w}}(g) |\nu(g)|^{s} dg,$$

where $c_{w,\tilde{w}}(g) = \langle \pi(g)w, \tilde{w} \rangle$ and $\nu =$ reduced norm on $M_n(D)$.

$$Z(\mathcal{F}\varphi,\check{c}_{w,\tilde{w}},n-s)=\gamma(\pi,s)Z(\varphi,c_{w,\tilde{w}},s),\quad\check{c}_{w,\tilde{w}}(g)=c_{w,\tilde{w}}(g^{-1})$$

Existence of L and ϵ -functions.

• M. Sato, F. Sato (1989) and I. Muller (arXiv 2008) on a class of prehomogeneous vector space (M, V) (ie. $\exists M(\bar{F})$ open orbit in $V \otimes \bar{F}$), with relative invariant polynomials P_0, \ldots, P_m $Z(\Phi, s, \omega) = \int_V \Phi(X) \prod_{j=0}^m \omega_j(P_j(X)) |P_j(X)|^{s_j} dX, \ \omega_j \in \widehat{F^*}, \ s \in \Omega \subset \mathbb{C}^m$

ightarrow abstract functional equations and explicit ones on examples.

GENERALIZATIONS OF TATE'S FUNCTIONAL EQUATION.

N.Bopp - H.Rubenthaler (2005): classification of commutative regular PV on R and explicit functional equations for zeta functions associated to minimal spherical principal series.
W. W. Li (2018-2021): abstract functional equations for zeta functions associated to smooth irreducible rep. on PV whose open orbit is a wavefront spherical variety (which includes symmetric space) (under some assumptions).

Our results are the analog in *p*-adic case of those of N.Bopp-H.Rubenthaler+existence of *L* functions.

Perspectives. For a class of commutative irred. regular PV with a unique open orbit, we hope to obtain explicit formulation of results of W.W. Li (and, if it is possible, with existence of L and ϵ -functions).

STRUCTURE OF 3-GRADED ALGEBRAS.

We fix F a *p*-adic field of charac. 0 and \overline{F} an algebraic closure.

A commutative prehomogeneous vector space over F (called a PV) is constructed from a 3-graded reductive algebra \tilde{g} defined over F.

$$\widetilde{\mathfrak{g}}=V^-\oplus \hspace{0.1in} \mathfrak{g} \hspace{0.1in} \oplus \hspace{0.1in} V^+$$
graded by $H_0:$ -2 0 2

We always suppose that:

1) The representation (\mathfrak{g}, V^+) is absolutely irreducible (i.e. $(\mathfrak{g} \otimes \overline{F}, V^+ \otimes \overline{F})$ is irreducible. 2) $\exists X \in V^+, Y \in V^-$ such that $\{Y, H_0, X\}$ is an \mathfrak{sl}_2 -triple (Regularity condition).

We fix $\mathfrak{a} = \text{maximal split abelian subalgebra of } \mathfrak{g}$ containing H_0 (it is also maximal split abelian in $\tilde{\mathfrak{g}}$)

 $\widetilde{\Sigma} = \text{ roots of } (\widetilde{\mathfrak{g}}, \mathfrak{a}), \quad \Sigma = \text{ roots of } (\mathfrak{g}, \mathfrak{g})_{\text{ for all } \mathfrak{g}} \in \mathfrak{g}_{\mathfrak{g}} = \mathfrak{g}_{\mathfrak{g}} \in \mathfrak{g}_{\mathfrak{g}}$

Theorem

There exists a basis of simple roots $\widetilde{\Pi} \subset \widetilde{\Sigma}$ such that 1 There is a unique root $\lambda_0 \in \widetilde{\Pi}$ with $\lambda_0(H_0) = 2$ 2 for $\nu \in \widetilde{\Pi}$, $\nu \neq \lambda_0$ then $\nu(H_0) = 0$. ($\Pi = \widetilde{\Pi} \setminus \lambda_0 = \text{basis of } \Sigma$). 3 Inductively, ($\widetilde{\mathfrak{g}}_1 = Z_{\widetilde{\mathfrak{g}}}(\widetilde{\mathfrak{l}}_0)$, with $\widetilde{\mathfrak{l}}_0 = \widetilde{\mathfrak{g}}^{-\lambda_0} \oplus [\widetilde{\mathfrak{g}}^{-\lambda_0}, \widetilde{\mathfrak{g}}^{\lambda_0}] \oplus \widetilde{\mathfrak{g}}^{\lambda_0}$),

 \exists a sequence of strongly orthogonal roots $\lambda_0, \lambda_1, \ldots, \lambda_k$, where k is uniquely determined by the condition

$$V^+ \cap Z_{\widetilde{\mathfrak{g}}}(\widetilde{\mathfrak{l}}_0 \oplus \ldots \oplus \widetilde{\mathfrak{l}}_k) = \{0\}.$$

and we have $H_0 = H_{\lambda_0} + \ldots + H_{\lambda_k}$ (H_{λ_j} is the coroot of λ_j). k + 1 is called **the rank** of \tilde{g} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CLASSIFICATION OF SIMPLE REGULAR IRREDUCIBLE 3-GRADED ALGEBRAS.

Let j be a Cartan subalgebra of $\tilde{\mathfrak{g}}$ such that $\mathfrak{a} \subset \mathfrak{j} \subset \mathfrak{g} \subset \tilde{\mathfrak{g}}$. Let $\tilde{\Psi}$ be a basis of $\tilde{\mathcal{R}}$ = roots of $(\tilde{\mathfrak{g}} \otimes \overline{F}, \mathfrak{j} \otimes \overline{F})$ such that $\rho(\tilde{\Psi}) = \tilde{\Pi} \cup \{0\}$, where $\rho : \mathfrak{j}^* \longrightarrow \mathfrak{a}^*$ is the restriction morphism.

PROPOSITION

There is a unique simple root $\alpha_0 \in \widetilde{\Psi}$ such that $\rho(\alpha_0) = \lambda_0$.

CONSEQUENCE

- **()** In the Satake -Tits diagram of $\tilde{\mathfrak{g}}$, the root α_0 is "white".
- The underlying Dynkin diagram, where the root α₀ is distinguished, correspond to a regular 3-graded algebra over *F*. (which are classified as on C (I.Muller- H.Rubenthaler-G.Schiffmann))

	Ĩ	g'	V^+	$\widetilde{\mathcal{R}}$	$\widetilde{\Sigma}$	Satake-Tits diagram	rank(=k+1)	e	d	e	Туре	1-type
(1)	$\mathfrak{sl}(2(k+1),D)$	$\mathfrak{sl}(k+1, D)$ \oplus $\mathfrak{sl}(k+1, D)$	M(k+1,D)	$A_{2n-1} \atop n=(k+1)\delta$	A_{2k+1}	where $\blacksquare = \underbrace{\bullet}_{\delta - 1}^{\bullet} (\delta \in \mathbb{N}^*)$	k + 1	δ^2	$2\delta^2$	0	I	(A, δ)
(2)	$\mathfrak{u}(2n, E, H_n)$	$\mathfrak{sl}(n,E)$	$\operatorname{Herm}_{\sigma}(n, E)$	A_{2n-1} $n \ge 1$	C_n		n	1	2	2	п	(A, 1)
(3)	$\mathfrak{o}(q_{(n+1,n)})$	$\mathfrak{o}(q_{(n,n-1)})$	F^{2n-1}	B_n $n \ge 3$	B_n	⊙ —⊙⊙ → ⊙	2	1	2n - 3	1	п	(A, 1)
(4)	$\mathfrak{o}(q_{(n+2,n-1)})$	$\mathfrak{o}(q_{(n+1,n-2)})$	F^{2n-1}	$B_n \atop{n \geqslant 3}$	B_{n-1}	©ooo•	2	1	2n - 3	3	п	(A, 1)
(5)	$o(q_{(4,1)})$	o(3)	F^3	B_2	$B_1 = A_1$	⊙⊶∙	1	3			ш	В
(6)	$\mathfrak{sp}(2n,F)$	$\mathfrak{sl}(n,F)$	$\operatorname{Sym}(n,F)$	C_n $n \ge 2$	C_n	0000€0	n	1	1	1	п	(A, 1)
(7)	$\mathfrak{u}(2n, \mathbb{H}, H_{2n})$	$\mathfrak{sl}(n,\mathbb{H})$	SkewHerm(n, H)	C_{2n}	C_n	• •	n	3	4	4	ш	В

Table 1 Simple Regular Graded Lie Algebras over a p-adic field

Basic invariants: • $\ell = \dim \tilde{\mathfrak{g}}^{\lambda_i}$, • $e = \dim \tilde{\mathfrak{g}}^{(\lambda_i + \lambda_j)} \ge 0$, $i \neq j$ • $d = \dim E_{i,j}(\pm 1, \pm 1)$ $i \neq j$, where $X \in E_{i,j}(p,q)$ $\iff [H_{\lambda_i}, X] = pX$, $[H_{\lambda_j}, X] = qX$, $[H_{\lambda_s}, X] = 0$, $s \neq i, j$,

-

	Ĩ	g'	V^+	$\widetilde{\mathcal{R}}$	$\tilde{\Sigma}$	Satake diagram	rank(=k+1)	l	d	e	Type	1-type
(8)	$\mathfrak{o}(q_{(m,m)})$	$\mathfrak{o}(q_{(m\!-\!1,m-1)})$	F^{2m-2}	D_m $m \ge 4$	D_m	••••••••••	2	1	2m-4	0	I	(A, 1)
(9)	$\mathfrak{o}(q_{(m\!+\!1,m\!-\!1)})$	$\mathfrak{o}(q_{(m,m-2)})$	F ^{2m-2}	D_m $m \ge 4$	B_{m-1}	•	2	1	2m-4	2	п	(A, 1)
(10)	$\mathfrak{o}(q_{(m+2,m-2)})$	$\mathfrak{o}(q_{(m+1,m-3)})$	F^{2m-2}	D_m $m \ge 4$	B_{m-2}	••••••••••••••••••••••••••••••••••••••	2	1	2m - 4	4	I	(A, 1)
(11)	$\mathfrak{o}(q_{(2n,2n)})$	$\mathfrak{sl}(2n,F)$	Skew(2n, F)	$D_{2n} \atop{n \geqslant 3}$	D_{2n}		n	1	4	0	I	(A, 1)
(12)	$\mathfrak{u}(2n,\mathbb{H},K_{2n})$	$\mathfrak{sl}(n,\mathbb{H})$	$\operatorname{Herm}(n, \mathbb{H})$	$D_{2n} \atop{n \geqslant 3}$	C_n	••	n	1	4	4	I	(A, 1)
(13)	split E_7	split E_6	$\operatorname{Herm}(3, \mathbb{O}_s)$	E_7	E_7	••-•••••••••••••••••••••••••••••••••	3	1	8	0	I	(A,1)

Table 1 (continued) Simple Regular Graded Lie Algebras over a p-adic field

We remark that $\ell = 3$ or $\ell = \delta^2$, $\delta \in \mathbb{N}^*$ and $0 \le e \le 4$.

(ロ) (型) (E) (E) (E) (O)(C)

G-OPEN ORBITS

Let $\operatorname{Aut}_0(\tilde{\mathfrak{g}}) = \operatorname{Aut}(\tilde{\mathfrak{g}}) \cap \operatorname{Aut}_e(\tilde{\mathfrak{g}} \otimes \overline{F})$ where $\operatorname{Aut}_e(\tilde{\mathfrak{g}} \otimes \overline{F}) = \langle e^{\operatorname{ad}(x)}, x \text{ nilpotent in } \tilde{\mathfrak{g}} \otimes \overline{F} \rangle$ (group of elementary automorphisms). We introduce the group G

$$G = Z_{\operatorname{Aut}_0(\tilde{\mathfrak{g}})}(H_0)$$

 $G = \mathbf{G}(F)$, **G** algebraic reductive group defined over F, $Lie(G) = \mathfrak{g}$, G stabilizes V^{\pm} and \mathfrak{g} .

Theorem

- (G, V⁺) is a regular irreducible prehomogeneous vector space. We denote by Δ₀ its relative invariant polynomial.
- 2 If $\ell = \delta^2$, $\delta \in \mathbb{N}^*$ and e = 0 or 4, the group G has a unique open orbit $\Omega^+ = \{X \in V^+; \Delta_0(X) \neq 0\}$,
- In other cases, the number r of open G-orbits in V⁺ depends on the parity of k and r ∈ {2,3,4,5} except when e = 2 and k is even for which r = 1.
- **4** Same results for (G, V^{-}) with relative inv. polynomial ∇_{0} .

Symmetric spaces and minimal σ_s - parabolic subgroup P

Let $\Omega_s^{\pm} = G.\mathcal{I}_s^{\pm}$, for s = 1..., r, be the open *G*-orbits in V^{\pm} with $\mathcal{I}_s^{\pm} \in \bigoplus_{j=0}^k \tilde{\mathfrak{g}}^{\pm\lambda_j}$, such that $\{\mathcal{I}_s^-, \mathcal{H}_0, \mathcal{I}_s^+\} = \mathfrak{s}l_2$ - triple

Let $w_s = e^{\operatorname{ad} \mathcal{I}_s^+} e^{\operatorname{ad} \mathcal{I}_s^-} e^{\operatorname{ad} \mathcal{I}_s^+}$ be the non trivial element of the corresponding Weyl group.

We set $\sigma_s(X) = w_s X, \ X \in \tilde{\mathfrak{g}}, \quad \sigma_s(g) = w_s g w_s^{-1}, \ g \in \operatorname{Aut}_0(\tilde{\mathfrak{g}}).$

PROPOSITION

- **1** σ_s is an involution of $\tilde{\mathfrak{g}}$, \mathfrak{g} and G.
- **2** $H_s = Z_G(\mathcal{I}_s^+) = Z_G(\mathcal{I}_s^-)$ is a subgroup of G^{σ_s} with Lie algebra \mathfrak{g}^{σ_s} so that $\Omega_s^{\pm} \simeq G/H_s$ are symmetric spaces.

Let
$$\mathfrak{a}^0 = \bigoplus_{j=0}^k FH_{\lambda_j}$$
 and $\mathfrak{n} = \bigoplus_{0 \le i < j \le k} E_{i,j}(1,-1) \subset \mathfrak{g}$ and
 $P = LN$ where $L = Z_G(\mathfrak{a}^0)$ and $N = \exp^{\operatorname{ad} \mathfrak{n}}$

Lemma

For all Ω_s^{\pm} , $\sigma_s(P)$ is the opposite parabolic subgroup of P (ie. P is a σ_s -parabolic subgroup), and P is minimal for this property.

Theorem

- Let Δ_j (j = 0, ..., k) be the relative invariant polynomial of (G_j, V_j^+) corresponding to $\tilde{\mathfrak{g}}_j = Z_{\tilde{\mathfrak{g}}}(\tilde{\mathfrak{l}}_0 \oplus ... \oplus \tilde{\mathfrak{l}}_j)$. Then
 - (P, V⁺) is prehomogeneous, and the Δ_j's are the relative invariants.
 - (P, V[−]) is prehomogeneous, with a family of relative invariants ∇_j.
 - **3** If $\ell = \delta^2$ and e = 0 or 4, P has a unique open orbit in V^{\pm} .
 - In other cases, the number N of open P-orbits depends on e, ℓ and k (N = 3^{k+1} if ℓ = 3, and for ℓ = 1: N = 4^k if e = 1 or 3 and N = 2^k if e = 2).

H-DISTINGUISHED REPRESENTATION AND ZETA FUNCTIONS.

From now, we assume that $\ell = \delta^2$ and e = 0 or 4. Hence, *G* and *P* have a unique open orbit in V^{\pm} . ($\Omega^{\pm} = G.\mathcal{I}^{\pm} \simeq G/H$).

H-DISTINGUISHED REPRESENTATION

A smooth admissible representation (π, W) of G is H-distinguished if $(W^*)^H \neq \{0\}$ (space of H-invariant linear forms).

ZETA FUNCTIONS (FORMALLY DEFINED).

For $\xi \in (W^*)^H$, $w \in W$ and $\Phi \in \mathcal{S}(V^+)$, $\Psi \in \mathcal{S}(V^-)$, and $z \in \mathbb{C}$, we set:

$$\mathcal{Z}^+(\Phi,z,\xi,w) = \int_{G/H} \Phi(g.\mathcal{I}^+) < \pi^*(g)\xi, w > |\Delta_0(g.\mathcal{I}^+)|^z dg,$$

$$\mathcal{Z}^{-}(\Psi, z, \xi, w) = \int_{G/H} \Psi(g.\mathcal{I}^{-}) < \pi^{*}(g)\xi, w > |\nabla_{0}(g.\mathcal{I}^{-})|^{z} dg.$$

If $\ell = \delta^2$, $d = 2\ell$ and e = 0, then by the classification

 $V^+ \simeq \mathfrak{gl}(n, D), \quad G/H \simeq GL(n, D) \times GL(n, D)/diag \simeq GL(n, D),$ where D is a central division algebra of degree δ . \implies our zeta functions coincide with those of Godement-Jacquet.

THEOREM (W.W. LI)

If (π, W) is irreducible, then for Re z >> 0, the integrals $\mathcal{Z}^{\pm}(\Phi, z, \xi, w)$ are convergent for $\Phi \in \mathcal{S}(V^{\pm})$, $(\xi, w) \in (W^*)^H \times W$, and extend to rational functions in q^{-z} .

Proof.

W.W. Li proves this result when G is split, using results of Sakellaridis and Venkatesh (on neighborhood at infinity and boundary degenerations). Arguments are valid in general case by P. Delorme's results.

Fourier transform.

 $\mathcal{F}(\Phi)(Y) = \int_{V^+} \Phi(X) \psi(b(X,Y)) dX, \ Y \in V^-, \ \Phi \in \mathcal{S}(V^+),$

where $\psi \in \hat{F}$, and b is a suitable normalization of the Killing form.

THEOREM (LI, H-RUBENTHALER)

Let (π, W) be a *H*-distinguished smooth irreducible representation of G $(\dim(W^*)^H < \infty$ by Sakellaridis - Venkatesh)). Then, there exists an endomorphism $\gamma_{\psi}(\pi, z)$ of W^{*H} , rational in q^{-z} , such that

$$\mathcal{Z}^-(\mathcal{F}(\Phi),m-z,\xi,w)=\mathcal{Z}^+(\Phi,z,\gamma_\psi(\pi,z)\xi,w),\,\,m=rac{\dim V^+}{k+1}.$$

Proof.

W.W. Li proves this results under assumptions on $V^+ - \Omega^+$. We give a simpler proof in our case using Bruhat's results.

Functional equation for H- distinguished minimal principal series

Here, we assume that $\ell = 1$ and e = 0 or 4. Recall that P = LN with $L = Z_G(\bigoplus_j FH_{\lambda_j})$ and $\sigma(P)$ is opposite to P. As $\ell = 1$ the group L acts by a scalar $x_j(\cdot)$ on $\tilde{\mathfrak{g}}^{\lambda_j}$ and

$$L/L \cap H \simeq (F^*)^{k+1}$$
 by the map $I \mapsto (x_0(I), \ldots, x_k(I)).$

For $\delta = (\delta_0, \dots, \delta_k) \in \widehat{F^*}^{k+1}$ a unitary character and $\mu \in \mathbb{C}^{k+1}$, we define a character δ_{μ} of L, which is trivial on $L \cap H$, by

$$\delta_{\mu}(I) = \prod_{j=0}^{k} \delta_j(x_j(I)) |x_j(I)|^{\mu_j}.$$

By P.Blanc-P.Delorme, for almost μ , the representation $(Ind_P^G \delta_{\mu}, I_{\delta_{\mu}})$ is *H*-distinguished and $\dim(I_{\delta_{\mu}}^*)^H = 1$.

FUNCTIONAL EQUATION FOR *H*- DISTINGUISHED MINIMAL PRINCIPAL SERIES ($\ell = 1, e = 0 \text{ or } 4$)

Theorem

Recall that
$$m = rac{\dim V^+}{k+1}$$
. Let $\xi \in (I^*_{\delta_\mu})^H$ and $w \in I_{\delta_\mu}$. Then

- $\mathcal{Z}^{\pm}(\Phi, z, \xi, w)$ are convergent for Re z >> 0 and extend to rational functions in q^{-z} ,
- **2** Existence of *L*-function: $\exists ! L^{\pm}(z, \delta_{\mu}) = P(q^{-z})^{-1}$ such that $P \in \mathbb{C}[X], P(0) = 1$ and $\{\mathcal{Z}^{\pm}(\Phi, z, \xi, w); \Phi, \xi, w \text{ as usual}\} = L^{\pm}(z, \delta_{\mu})\mathbb{C}[q^{-z}, q^{z}]$
- **8** Explicit functional equation

$$\mathcal{Z}^-(\mathcal{F}\Phi, \frac{(m+1)}{2}-z, \xi, w) = d(\delta, \mu, z) \ \mathcal{Z}^+(\Phi, z + \frac{(m-1)}{2}, \xi, w)$$

with $d(\delta, \mu, z) = C_{\tilde{\mathfrak{g}}} \prod_{j=0}^{k} \gamma(\delta_j, z - \mu_j, \psi)$

where $\gamma(\cdot, \cdot, \psi)$ is the inverse of the ρ function of Tate, $C_{\tilde{\mathfrak{g}}} \in \mathbb{C}^*$.

Moreover
$$d(\delta, \mu, z) = C' \frac{L^{-}(1 - z, \delta_{\mu})}{L^{+}(z, \delta_{\mu})} q^{-sn}, \ C' \in \mathbb{C}, n \in \mathbb{Z}.$$

Comments

• On the proof:- Relation between $\mathcal{Z}^+(\Phi, z, \xi, w)$ and the zeta functions $Z(\Phi, \omega, s)$ of Sato for (P, V^+) when z and μ are in some convex cones

$$Z(\Phi,\omega,s) = \int_{V^+} \Phi(X) \prod \omega_j(\Delta_j(X)) |\Delta_j(X)|^{s_j} dX.$$

- (P, V^{\pm}) satisfies hypothesis of Theorem k_p of F. Sato (on P singular orbits on $V^+ - \Omega^+$) \longrightarrow abstract functional equation for the zeta functions $Z(\Phi, \omega, s)$ of Sato.

• The last point is an easy consequence of existence of *L*-functions and functional equation.

• Open problem: Explicit expression of L-functions.

COROLLARY

If (π, W) is an irreducible *H*-distinguished subrepresentation of $I_{\delta\mu}$ then the same results hold for zeta functions associated to (π, W) .

(コンス語) (コンスロンス語)

Generalize our result to any smooth irreducible *H*-distinguished representation (π, W) : Subrepresentation Theorem for *p*-adic symmetric spaces of Kato -Takano: (π, W) is a subrepresentation of $Ind_Q^G \tau$, where • *Q* is σ -parabolic subgroup (ie. $\sigma(Q)$ and *Q* are opposite) • τ is a relatively cuspidal representation of $M = Q \cap \sigma(Q)$ (ie. τ = smooth irred., $M \cap H$ -distinguished and $\langle \tau^*(m)\xi, w \rangle$ is compactly supported modulo $Z_M(M \cap H)$ for $\xi \in (V_\tau^*)^{H \cap M}$ and $w \in V_\tau$).

PROPOSITION

- If $(au, V_{ au})$ is relatively cuspidal representation, then
- there exists *L*-functions for $\mathcal{Z}^{\pm}(\Phi, \tau, \xi, v)$.
- Moreover, if dim $(V_{\tau}^*)^{M\cap H} = 1$, then the factor $\gamma(\tau, z, \psi)$ is scalar and satisfies $\gamma(\tau, z, \psi) = C \frac{L^{-}(1-z,\tau)}{L^{+}(z,\tau)} q^{-sn}$ for some $C \in \mathbb{C}^*$, $n \in \mathbb{Z}$.

THANK YOU FOR YOUR ATTENTION

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ